Suppression of TET1-dependent DNA demethylation is essential for KRAS-mediated transformation.

نویسندگان

  • Bo-Kuan Wu
  • Charles Brenner
چکیده

Hypermethylation-mediated tumor suppressor gene (TSG) silencing is a central epigenetic alteration in RAS-dependent tumorigenesis. Ten-eleven translocation (TET) enzymes can depress DNA methylation by hydroxylation of 5-methylcytosine (5mC) bases to 5-hydroxymethylcytosine (5hmC). Here, we report that suppression of TET1 is required for KRAS-induced DNA hypermethylation and cellular transformation. In distinct nonmalignant cell lines, oncogenic KRAS promotes transformation by inhibiting TET1 expression via the ERK-signaling pathway. This reduces chromatin occupancy of TET1 at TSG promoters, lowers levels of 5hmC, and increases levels of 5mC and 5mC-dependent transcriptional silencing. Restoration of TET1 expression by ERK pathway inhibition or ectopic TET1 reintroduction in KRAS-transformed cells reactivates TSGs and inhibits colony formation. KRAS knockdown increases TET1 expression and diminishes colony-forming ability, whereas KRAS/TET1 double knockdown bypasses the KRAS dependence of KRAS-addicted cancer cells. Thus, suppression of TET1-dependent DNA demethylation is critical for KRAS-mediated transformation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrinsic and extrinsic regulation of DNA methylation during malignant transformation

ii ACKNOWLEDGMENTS First, I would like to thank my mentor, Dr. Charles Brenner. He provided me a great opportunity to get excellent training in his lab with ample freedom and full support. He introduced me to the interesting DNA methylation field, which I plan to keep focusing on in the future. Finally, I would like to thank my family for their patience and encouragement. I appreciate everythin...

متن کامل

KRAS-driven miR-29b expression is required for tumor suppressor gene silencing

KRAS activation drives DNA methylation and silencing of specific tumor suppressor genes (TSGs). We previously showed that the ERK pathway induces transcriptional repression of TET1, which results in conversion of TSG promoters from a hydroxymethylated, active state to a hypermethylated and silenced state. Here we identified miR-29b as a KRAS-induced molecule that represses TET1 expression. In K...

متن کامل

TET1 Controls CNS 5-Methylcytosine Hydroxylation, Active DNA Demethylation, Gene Transcription, and Memory Formation

Dynamic changes in 5-methylcytosine (5mC) have been implicated in the regulation of gene expression critical for consolidation of memory. However, little is known about how these changes in 5mC are regulated in the adult brain. The enzyme methylcytosine dioxygenase TET1 (TET1) has been shown to promote active DNA demethylation in the nervous system. Therefore, we took a viral-mediated approach ...

متن کامل

CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter

DNA hypermethylation at the promoter of tumour-suppressor genes is tightly correlated with their transcriptional repression and recognized as the hallmark of majority of cancers. Epigenetic silencing of tumour suppressor genes impairs their cellular functions and activates a cascade of events driving cell transformation and cancer progression. Here, we examine site-specific and spatiotemporal a...

متن کامل

GADD45a physically and functionally interacts with TET1

DNA demethylation plays a central role during development and in adult physiology. Different mechanisms of active DNA demethylation have been established. For example, Growth Arrest and DNA Damage 45-(GADD45) and Ten-Eleven-Translocation (TET) proteins act in active DNA demethylation but their functional relationship is unresolved. Here we show that GADD45a physically interacts--and functionall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell reports

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2014